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Lecture 10 – Reasoning about Action II



  

Outline

● Planning a sequence of actions to achieve a 
given state

● STRIPS planning
● Planning and the frame problem
● Example: blocks world revisited
● Regression planning with STRIPS
● Least commitment planning



  

Change

● Representing how things change is one of the 
most important areas in knowledge 
representation
● to learn we need to represent what happened in the 

past
● to plan we need to represent hypothetical future 

states

● Reasoning about change is one of the most 
important kinds of reasoning - critical for 
selecting actions



  

Situation Calculus

● World is represented as a series of situations or  
'snapshots'

● Each relation or property of our knowledge 
representation that can change is extended with 
an additional situation argument, e.g., e.g., 
At(brian, C3, s

0
), At(brian, office, s

1
)

● Situations are simply constants - names for a 
particular state of the world

● All sentences which are true at a given point in 
time (situation) have the same situation argument



  

Results of Actions

● An action performed in a given situation s 
results in a new situation

● The function result(a, s) is used to denote the 
situation which results from performing the 
action a in the situation s, e.g.:
● the term result (pickup(x), s) denotes the situation 

which results from picking up the block x in situation 
s

● Each action is described by two axioms: a 
possibility axiom and an effects axiom



  

Frame Axioms

● Effect axioms are not sufficient to keep track of 
which formulas are true in a given situation

● We also need to explicitly state which parts of 
the world are not changed by an action

● Axioms which describe which parts of the world 
are not changed by an action are called frame 
axioms

● Together, the effect and frame axioms provide a 
complete description of how the world evolves in 
response to actions



  

Planning

● Situation calculus tells us how the world necessarily 
changes as a result of performing an action

● Planning involves choosing a sequence of actions 
which, if executed, will achieve a given state of the 
world

● May be more than one sequence of actions which 
achieve the specified state

● Relies on localised representations and may use 
reasoning (e.g., situation calculus) to infer the 
consequences of possible actions



  

Planning in the Real World

● Planning is a hard problem
● Our knowledge of the initial state of the world is 

often incomplete or incorrect
● The world is continually changing and continues 

to change while we are planning
● Performing an action doesn't always have the 

intended effect - actions can fail or just have 
unpredictable outcomes

● We may make errors executing the plan



  

Classical Planning

● To make the problem tractable, we make some 
simplifying assumptions:

● We have perfect knowledge of the world, including the 
location and properties of all the objects in the world

● The world is static - i.e., it doesn't change unless we 
change it

● The world is deterministic - we know in advance the 
effect of performing an action in the world and each 
action has a single outcome

● Plan execution is error-free



  

Reasoning and Planning

● We can represent the problem in situation calculus and use 
standard logical inference to find plans

● For example, given a specification of a 'blocks-world' 
problem in the situation calculus: initial state, goal state, 
axioms describing the operators

● Given a goal, e.g, On(a, b) we can try to prove that there is 
a state in which, e.g., block a is on block b: ∃s On(a, b, s)

● The sequence of actions resulting in s gives the plan, e.g.,

result(put(a, b), result(pickup(a), s
0
)))

● However this does not necessarily give a concise plan and 
can be very inefficient



  

Planning Problems

● Goal(s) to be achieved - complete or partial state description(s)

● Initial state(s) - again these may be complete or partial state 
descriptions; we may not know everything about the initial state or we 
may want a plan that works in a range of situations

● Operators specifying the preconditions and effects of actions

● Like situation calculus (and unlike problem-solving) the pre- and 
postconditions of an action are local or partial

● State descriptions localised rather than global, e.g., on(blockA, 
blockB) vs <1, 0, 2, 0, 1, 2, 0, 0, 1> in the eight puzzle



  

STRIPS

● States are represented as conjunctions of (function-free) ground 
literals

● Goals are represented by conjunctions of literals, possibly 
containing existentially quantified variables

● Actions are represented by operators which specify
● the name of the action

● the precondition - a conjunction of positive literals specifying what must 
be true for the action to be applicable

● the postcondition - a conjunction of literals specifying how the situation 
changes when the operator is applied



  

STRIPS continued

● For example, an operator which stacks one block on top of another 
in the blocks world could be specified as

[Clear(x), Clear(y)] STACK(x, y) [On(x, y), ¬Clear(y)]

● The precondition implicitly refers to the situation, s, immediately 
before the action, and the postcondition implicitly refers to the 
situation, s', which results from performing the action

● In s', all the positive literals in the postcondition hold, as do all the 
literals that held at s, except for those that are negative literals in 
the postcondition



  

Reasoning about Change

● When reasoning about how actions change the 
world, we need to consider:
● when an action is applicable - the qualification 

problem
● what the action changes - the ramification problem
● what the action does not change - the 

representational and inferential frame problems



  

Change in the Situation Calculus

● In the situation calculus, these three problems 
are formalised using three sets of axioms:
● possibility axioms say when an action is applicable
● effects axioms say what an action changes
● frame axioms say what an action does not change

● In STRIPS planning, operators take the place of 
possibility and effects axioms and there are no 
frame axioms



  

Planning and the Frame Problem

● Planning effectively pushes the frame axioms into the 
inference procedure

● The planner can assume that anything which is not 
explicitly listed as a postcondition of an action does not 
change

● This 'solves' the representational and inferential frame 
problems

● It does not solve the qualification problem or the 
ramification problem

● User must still provide complete descriptions of an 
action's pre- and postconditions



  

Example: Blocks World

● The blocks world domain consists of
● a table, a set of cubic blocks and a robot arm
● each block is either on the table, stacked on top of 

another block or being held by the arm
● the arm can pick up a block and move it to another 

position either on the table or on top of another block
● the arm can only pick up one block at a time, so it 

cannot pick up a block which has another block on top

● The goal is a plan to build one or more stacks of 
blocks, specified in terms of which blocks are on 
top of which other blocks



  

Example: Representing the
Blocks World

● Blocks are represented by constants: a, b, c, ... etc.
● States are described using the following predicates:

On(x, y) block x is on block y

OnTable(x) block x is on the table

Clear(x) there is no bock on top of block x

Holding(x) the arm is holding block x

ArmEmpty the arm is not holding any block

● Note that in STRIPS, the predicates (fluents) do not 
have a situation argument



  

Example: Blocks World Operators

[ Holding(x), Clear(y) ] STACK(x, y) [ On(x, y), ArmEmpty,

 ¬Holding(x), ¬Clear(y) ]

[ On(x, y), Clear(x), ArmEmpty ] UNSTACK(x, y) [Clear(y),

 Holding(x), ¬On(x, y), ¬ArmEmpty ]

[ OnTable(x), Clear(x), ArmEmpty ] PICKUP(x) [ Holding(x),

 ¬OnTable(x), ¬ArmEmpty, ]

[ Holding(x) ] PUTDOWN(x) [ OnTable(x), ArmEmpty, ¬Holding(x), ]



  

Example: Blocks World Axioms

● As in the situation calculus, we need some 
axioms to reason about the effects 
(ramifications) of actions

∀x (OnTable(x) ↔ ¬∃yOn(x, y) ∧ ¬Holding(x))

∀x (∃yOn(x, y) ↔ ¬OnTable(x) ∧ ¬Holding(x))

∀x (Holding(x) ↔ ¬∃yOn(x, y)  ∧ ¬OnTable(x))

∀x (Clear(x) ↔ ¬∃y On(y, x))

ArmEmpty ↔ ¬∃xHolding(x)



  

Example: Blocks World Problem

● Initial state:

On(c, a) ∧ OnTable(a) ∧ OnTable(b) ∧ ArmEmpty ∧ 
Clear(b) ∧ Clear(c)

● Goal state: On(a, b) ∧ On(b, c) ∧ OnTable(c)

A

C

B C

B

A



  

Regression Planning

● One way to solve STRIPS problems is to search backwards from the goal 
in world (situation) space

● Operator preconditions become subgoals—we stop when the operator 
preconditions are satisfied in the current state

● Resulting plan is a series of instantiated operators which, if applied in the 
initial state, result in the goal state

● Searching backwards often reduces the branching factor

● In typical problems the goal state has a small number of conjuncts, each 
of which is made true by a small number of operators, while there are 
many operators that can be applied in the initial state



  

Regression Planning in the
Blocks World

● For example, we can decompose the blocks world problem into three 
subgoals: On(a, b), On(b, c) and OnTable(c)

● The first subgoal, On(a, b), is false in the initial situation, so we look 
for an operator which makes it true

● In this case, there is only one, STACK(a, b), which has preconditions: 
Holding(a), which is false, and Clear(b), which is true

● Holding(a) becomes a new subgoal, and we look for an operator to 
make it true - in this case there are two operators we can choose: 
UNSTACK and PICKUP

● and so on …



  

Exercise: STRIPS Planning

● Find a sequence of operator applications which 
achieves the subgoal On(a, b)

● Find a sequence of operator applications which 
achieves the goal

On(a, b) ∧ On(b, c) ∧ OnTable(c)



  

Clobbering

● With conjunctive goals it can be hard to 
ensure that steps in the plan don't interfere

● When planning to achieve G
1
 ^ G

2
 the 

postcondition of an action to achieve G
2
 

may make G
1
 false

● For example, the state after achieving the 
first subgoal, On(a, b), could be as in (1)

● After achieving the second and third 
subgoals, On(b, c) and OnTable(c) the 
state could be as in (2)

(Figure 1) On(a, b) achieved

(Figure 2) On(b, c) and OnTable (a) achieved

C

A

B

A

B

C



  

Least Commitment

● Many planners adopt a principle of least 
commitment, which states that choices about 
plan step ordering and operator variable binding 
should only be made when necessary

● Reduces backtracking while planning
● Allows the agent to execute actions in parallel if 

it can
● A planner which returns plans in which some 

steps are ordered and other steps are unordered 
is called a partial order planner



  

Partial Order Planning

● A partial order plan consists of:
● a set of steps (operator applications)

● a set of ordering constraints on steps of the form o
i
 

< o
j
 (step i before step j)

● a set of variable binding constraints, v = x, where v 
is a variable in some step, and x is a constant or 
another variable

● a set of causal links, o
i
 → 

c
o

j
 , (i achieves 

precondition c for j), which record the purpose of 
the step in the plan



  

Partial Plans

● Most partial order planners search in plan space rather than 
world (situation) space

● Planner progressively modifies an initial partial plan by 
adding steps and/or ordering or variable binding constraints

● Initial plan consists of two special operators:
● start has no preconditions and its postcondition adds all the 

propositions that are true in the initial state
● end has the goal state as its precondition and no effects

● and the ordering constraint start < end

● A plan is complete if every precondition of every step is 
achieved by some other step, and consistent if there are no 
contradictions in the ordering or binding constraints



  

Other Planning Approaches

● Hierarchical planning - using abstract operators 
to find an abtract plan which is then refined to 
the level of individual plan steps

● Planning with resource constraints (time, money 
etc.)

● Planning under incomplete information - plans 
contain conditional operators which incorporate 
sensing actions to select the action(s) to perform 
depending on the state of the world

● Interleaving planning and acting



  

Summary

● AI planning systems solve a particular kind of 
reasoning problem by
● changing the state representation from explicit to 

attribute-based, allowing partial representations of 
states

● changing the operator representation and inference 
procedure to avoid the need for explicit frame 
axioms

● changing the space in which the search is carried 
out (from world space to plan space)
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