

Artificial Intelligence

Lecture 10 – Reasoning about Action II

Outline

● Planning a sequence of actions to achieve a
given state

● STRIPS planning
● Planning and the frame problem
● Example: blocks world revisited
● Regression planning with STRIPS
● Least commitment planning

Change

● Representing how things change is one of the
most important areas in knowledge
representation
● to learn we need to represent what happened in the

past
● to plan we need to represent hypothetical future

states

● Reasoning about change is one of the most
important kinds of reasoning - critical for
selecting actions

Situation Calculus

● World is represented as a series of situations or
'snapshots'

● Each relation or property of our knowledge
representation that can change is extended with
an additional situation argument, e.g., e.g.,
At(brian, C3, s

0
), At(brian, office, s

1
)

● Situations are simply constants - names for a
particular state of the world

● All sentences which are true at a given point in
time (situation) have the same situation argument

Results of Actions

● An action performed in a given situation s
results in a new situation

● The function result(a, s) is used to denote the
situation which results from performing the
action a in the situation s, e.g.:
● the term result (pickup(x), s) denotes the situation

which results from picking up the block x in situation
s

● Each action is described by two axioms: a
possibility axiom and an effects axiom

Frame Axioms

● Effect axioms are not sufficient to keep track of
which formulas are true in a given situation

● We also need to explicitly state which parts of
the world are not changed by an action

● Axioms which describe which parts of the world
are not changed by an action are called frame
axioms

● Together, the effect and frame axioms provide a
complete description of how the world evolves in
response to actions

Planning

● Situation calculus tells us how the world necessarily
changes as a result of performing an action

● Planning involves choosing a sequence of actions
which, if executed, will achieve a given state of the
world

● May be more than one sequence of actions which
achieve the specified state

● Relies on localised representations and may use
reasoning (e.g., situation calculus) to infer the
consequences of possible actions

Planning in the Real World

● Planning is a hard problem
● Our knowledge of the initial state of the world is

often incomplete or incorrect
● The world is continually changing and continues

to change while we are planning
● Performing an action doesn't always have the

intended effect - actions can fail or just have
unpredictable outcomes

● We may make errors executing the plan

Classical Planning

● To make the problem tractable, we make some
simplifying assumptions:

● We have perfect knowledge of the world, including the
location and properties of all the objects in the world

● The world is static - i.e., it doesn't change unless we
change it

● The world is deterministic - we know in advance the
effect of performing an action in the world and each
action has a single outcome

● Plan execution is error-free

Reasoning and Planning

● We can represent the problem in situation calculus and use
standard logical inference to find plans

● For example, given a specification of a 'blocks-world'
problem in the situation calculus: initial state, goal state,
axioms describing the operators

● Given a goal, e.g, On(a, b) we can try to prove that there is
a state in which, e.g., block a is on block b: ∃s On(a, b, s)

● The sequence of actions resulting in s gives the plan, e.g.,

result(put(a, b), result(pickup(a), s
0
)))

● However this does not necessarily give a concise plan and
can be very inefficient

Planning Problems

● Goal(s) to be achieved - complete or partial state description(s)

● Initial state(s) - again these may be complete or partial state
descriptions; we may not know everything about the initial state or we
may want a plan that works in a range of situations

● Operators specifying the preconditions and effects of actions

● Like situation calculus (and unlike problem-solving) the pre- and
postconditions of an action are local or partial

● State descriptions localised rather than global, e.g., on(blockA,
blockB) vs <1, 0, 2, 0, 1, 2, 0, 0, 1> in the eight puzzle

STRIPS

● States are represented as conjunctions of (function-free) ground
literals

● Goals are represented by conjunctions of literals, possibly
containing existentially quantified variables

● Actions are represented by operators which specify
● the name of the action

● the precondition - a conjunction of positive literals specifying what must
be true for the action to be applicable

● the postcondition - a conjunction of literals specifying how the situation
changes when the operator is applied

STRIPS continued

● For example, an operator which stacks one block on top of another
in the blocks world could be specified as

[Clear(x), Clear(y)] STACK(x, y) [On(x, y), ¬Clear(y)]

● The precondition implicitly refers to the situation, s, immediately
before the action, and the postcondition implicitly refers to the
situation, s', which results from performing the action

● In s', all the positive literals in the postcondition hold, as do all the
literals that held at s, except for those that are negative literals in
the postcondition

Reasoning about Change

● When reasoning about how actions change the
world, we need to consider:
● when an action is applicable - the qualification

problem
● what the action changes - the ramification problem
● what the action does not change - the

representational and inferential frame problems

Change in the Situation Calculus

● In the situation calculus, these three problems
are formalised using three sets of axioms:
● possibility axioms say when an action is applicable
● effects axioms say what an action changes
● frame axioms say what an action does not change

● In STRIPS planning, operators take the place of
possibility and effects axioms and there are no
frame axioms

Planning and the Frame Problem

● Planning effectively pushes the frame axioms into the
inference procedure

● The planner can assume that anything which is not
explicitly listed as a postcondition of an action does not
change

● This 'solves' the representational and inferential frame
problems

● It does not solve the qualification problem or the
ramification problem

● User must still provide complete descriptions of an
action's pre- and postconditions

Example: Blocks World

● The blocks world domain consists of
● a table, a set of cubic blocks and a robot arm
● each block is either on the table, stacked on top of

another block or being held by the arm
● the arm can pick up a block and move it to another

position either on the table or on top of another block
● the arm can only pick up one block at a time, so it

cannot pick up a block which has another block on top

● The goal is a plan to build one or more stacks of
blocks, specified in terms of which blocks are on
top of which other blocks

Example: Representing the
Blocks World

● Blocks are represented by constants: a, b, c, ... etc.
● States are described using the following predicates:

On(x, y) block x is on block y

OnTable(x) block x is on the table

Clear(x) there is no bock on top of block x

Holding(x) the arm is holding block x

ArmEmpty the arm is not holding any block

● Note that in STRIPS, the predicates (fluents) do not
have a situation argument

Example: Blocks World Operators

[Holding(x), Clear(y)] STACK(x, y) [On(x, y), ArmEmpty,

 ¬Holding(x), ¬Clear(y)]

[On(x, y), Clear(x), ArmEmpty] UNSTACK(x, y) [Clear(y),

 Holding(x), ¬On(x, y), ¬ArmEmpty]

[OnTable(x), Clear(x), ArmEmpty] PICKUP(x) [Holding(x),

 ¬OnTable(x), ¬ArmEmpty,]

[Holding(x)] PUTDOWN(x) [OnTable(x), ArmEmpty, ¬Holding(x),]

Example: Blocks World Axioms

● As in the situation calculus, we need some
axioms to reason about the effects
(ramifications) of actions

∀x (OnTable(x) ↔ ¬∃yOn(x, y) ∧ ¬Holding(x))

∀x (∃yOn(x, y) ↔ ¬OnTable(x) ∧ ¬Holding(x))

∀x (Holding(x) ↔ ¬∃yOn(x, y) ∧ ¬OnTable(x))

∀x (Clear(x) ↔ ¬∃y On(y, x))

ArmEmpty ↔ ¬∃xHolding(x)

Example: Blocks World Problem

● Initial state:

On(c, a) ∧ OnTable(a) ∧ OnTable(b) ∧ ArmEmpty ∧
Clear(b) ∧ Clear(c)

● Goal state: On(a, b) ∧ On(b, c) ∧ OnTable(c)

A

C

B C

B

A

Regression Planning

● One way to solve STRIPS problems is to search backwards from the goal
in world (situation) space

● Operator preconditions become subgoals—we stop when the operator
preconditions are satisfied in the current state

● Resulting plan is a series of instantiated operators which, if applied in the
initial state, result in the goal state

● Searching backwards often reduces the branching factor

● In typical problems the goal state has a small number of conjuncts, each
of which is made true by a small number of operators, while there are
many operators that can be applied in the initial state

Regression Planning in the
Blocks World

● For example, we can decompose the blocks world problem into three
subgoals: On(a, b), On(b, c) and OnTable(c)

● The first subgoal, On(a, b), is false in the initial situation, so we look
for an operator which makes it true

● In this case, there is only one, STACK(a, b), which has preconditions:
Holding(a), which is false, and Clear(b), which is true

● Holding(a) becomes a new subgoal, and we look for an operator to
make it true - in this case there are two operators we can choose:
UNSTACK and PICKUP

● and so on …

Exercise: STRIPS Planning

● Find a sequence of operator applications which
achieves the subgoal On(a, b)

● Find a sequence of operator applications which
achieves the goal

On(a, b) ∧ On(b, c) ∧ OnTable(c)

Clobbering

● With conjunctive goals it can be hard to
ensure that steps in the plan don't interfere

● When planning to achieve G
1
 ^ G

2
 the

postcondition of an action to achieve G
2

may make G
1
 false

● For example, the state after achieving the
first subgoal, On(a, b), could be as in (1)

● After achieving the second and third
subgoals, On(b, c) and OnTable(c) the
state could be as in (2)

(Figure 1) On(a, b) achieved

(Figure 2) On(b, c) and OnTable (a) achieved

C

A

B

A

B

C

Least Commitment

● Many planners adopt a principle of least
commitment, which states that choices about
plan step ordering and operator variable binding
should only be made when necessary

● Reduces backtracking while planning
● Allows the agent to execute actions in parallel if

it can
● A planner which returns plans in which some

steps are ordered and other steps are unordered
is called a partial order planner

Partial Order Planning

● A partial order plan consists of:
● a set of steps (operator applications)

● a set of ordering constraints on steps of the form o
i

< o
j
 (step i before step j)

● a set of variable binding constraints, v = x, where v
is a variable in some step, and x is a constant or
another variable

● a set of causal links, o
i
 →

c
o

j
 , (i achieves

precondition c for j), which record the purpose of
the step in the plan

Partial Plans

● Most partial order planners search in plan space rather than
world (situation) space

● Planner progressively modifies an initial partial plan by
adding steps and/or ordering or variable binding constraints

● Initial plan consists of two special operators:
● start has no preconditions and its postcondition adds all the

propositions that are true in the initial state
● end has the goal state as its precondition and no effects

● and the ordering constraint start < end

● A plan is complete if every precondition of every step is
achieved by some other step, and consistent if there are no
contradictions in the ordering or binding constraints

Other Planning Approaches

● Hierarchical planning - using abstract operators
to find an abtract plan which is then refined to
the level of individual plan steps

● Planning with resource constraints (time, money
etc.)

● Planning under incomplete information - plans
contain conditional operators which incorporate
sensing actions to select the action(s) to perform
depending on the state of the world

● Interleaving planning and acting

Summary

● AI planning systems solve a particular kind of
reasoning problem by
● changing the state representation from explicit to

attribute-based, allowing partial representations of
states

● changing the operator representation and inference
procedure to avoid the need for explicit frame
axioms

● changing the space in which the search is carried
out (from world space to plan space)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

